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Broader vision

Many software models are based on graphs.

= Exploring possibilities in GT to interactively construct
graphs.



Project goals

Experiment with ways to quickly build graph models using
Bloc:

e interactively construct graphs (syntax)
e assign interpretation to graphs (semantics)
e execute graph models




What is Bloc?

Glamorous Toolkit (GT) is a moldable development
environment written in Pharo Smalltalk.

Bloc is the graphical framework delivered with GT.



Bloc hierarchy

BlElement is the root class of all visual elements in Bloc
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Implementation background

Applied model-view-controller (MVC) design pattern
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Implementation results

1. Interactive graph editor

2. EXxport created graph as code
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self nodes: #(1 2 3 4) asOrderedCollection.
self places: #() asOrderedCollection.

self transitions: #() asOrderedCollection.
self edges: {1->2. 2->3. 3->2. 3->4} asOrderedCollection.
self currentState: 1.

self weights: {(1->2)->0.(2->3)->0.(3->2)->0.

(3->4)->0} asOrderedDictionary.

self tokens: {} asOrderedDictionary.

self nodelLocations: { 1->(143.0@123.0). 2->(30.0@128.0).
3->(27.0@9.0). 4->(141.0@11.0)} asOrderedDictionary.
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Implementation results

3. Implementation of finite state automata (FSA)
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Challenges

 Finding a stable GT version

e Limited sources of knowledge about Bloc
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Possible future work

e Implement further graph models, i.e. extend syntax &
semantics.

e Add algorithms for solving graph problems (e.g. max flow
problem).

e |ntegration into the interactive actor modeling project.
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ummary

Project goals

Experiment with ways to quickly build graph models using
Bloc:

e interactively construct graphs
* assign interpretation to graphs (semantics)
* execute graph models

Possible future work

¢ Implement further graph models, i.e. extend syntax &
semantics.

¢ Add algorithms for solving graph problems (e.g. max flow
problem).

¢ Integration into the interactive requirements modeling
project.
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Implementation results

1. Interactive graph editor (syntax)

2. Export created graph as code
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f nodes #(1 2 3 4) asOrderedCollection.
self places: #() asOrderedCollection.
f transitions: #() asOrderedCollection.

View Raw Connections

o ®

elf edges: {1->2. 2->3. 3->2. 3->4} asOrderedCollection.
o 0 self currentState: 1.

f weights: {(1->2)->0.(2->3)->0.(3->2)->0.
(3 >4)->0} asOrderedDictionary.
1f tokens: {} asOrderedDictionary.

self nodeLocations: { 1->(143.0@123.0). 2->(30.6@128.0).
° ‘ 3->(27.0@9.0). 4->(141.0@11.0)} asOrderedDictionary.

Implementation results

3. Implementation of finite state automata (FSA)

x — O Inspectorona Grz D2~
4. Implementation of petri net aGraph
Raw _GT Meta
x -0 Inspector on a Graph Dz~ aGraph i m
aGraph 2

View Raw Connections Print
Raw _GT Meta
aGraph i m

View Raw Connections Print Meta

(O ==
O—@—@—
@ O O

(o

12



