Executable graph
models In Bloc

Louis Muller
Software Composition Seminar, fall 2019

Broader vision

Many software models are based on graphs.

= Exploring possibilities in GT to interactively construct
graphs.

Project goals

Experiment with ways to quickly build graph models using
Bloc:

e interactively construct graphs (syntax)
e assign interpretation to graphs (semantics)
e execute graph models

What is Bloc?

Glamorous Toolkit (GT) is a moldable development
environment written in Pharo Smalltalk.

Bloc is the graphical framework delivered with GT.

Bloc hierarchy

BlElement is the root class of all visual elements in Bloc

Playground D7 v

x - 0O
Page » |< [I]| -= aBlElement (BlElement) x
BLElement new
geometry: BlCircle new;
background: Color blue;

size: 150@150.

Implementation background

Applied model-view-controller (MVC) design pattern

GraphController
update modify

Implementation results

1. Interactive graph editor

2. EXxport created graph as code

x — O Inspector D ? -
a Graph B>
Raw _GT Meta demol
<gtExample>
a Graph i (n|

self nodes: #(1 2 3 4) asOrderedCollection.
self places: #() asOrderedCollection.

self transitions: #() asOrderedCollection.
self edges: {1->2. 2->3. 3->2. 3->4} asOrderedCollection.
self currentState: 1.

self weights: {(1->2)->0.(2->3)->0.(3->2)->0.

(3->4)->0} asOrderedDictionary.

self tokens: {} asOrderedDictionary.

self nodelLocations: { 1->(143.0@123.0). 2->(30.0@128.0).
3->(27.0@9.0). 4->(141.0@11.0)} asOrderedDictionary.

View Raw Connections

©

Implementation results

3. Implementation of finite state automata (FSA)

x — O Inspectoron a Gr: D ?2 -
4. Implementation of petri net a Graph
Raw _GT Meta
x - 0O Inspector on a Graph D ? - a Graph i M
a Graph 2

View Raw Connections Print
Raw _GT Meta

a Graph i nn

View Raw Connections Print Meta

©< 1
(&) (2 @
o G (e

x - 0O

a Graph
Raw _GT Meta

a Graph

View Raw Connections

Inspector on a Graph

Print Meta

Challenges

 Finding a stable GT version

e Limited sources of knowledge about Bloc

10

Possible future work

e Implement further graph models, i.e. extend syntax &
semantics.

e Add algorithms for solving graph problems (e.g. max flow
problem).

e |ntegration into the interactive actor modeling project.

11

ummary

Project goals

Experiment with ways to quickly build graph models using
Bloc:

e interactively construct graphs
* assign interpretation to graphs (semantics)
* execute graph models

Possible future work

¢ Implement further graph models, i.e. extend syntax &
semantics.

¢ Add algorithms for solving graph problems (e.g. max flow
problem).

¢ Integration into the interactive requirements modeling
project.

1

Implementation results

1. Interactive graph editor (syntax)

2. Export created graph as code

x — O Inspector« D2~
aGraph E»
Raw | _GT Meta demol
<gtExample
aGraph i m §

f nodes #(1 2 3 4) asOrderedCollection.
self places: #() asOrderedCollection.
f transitions: #() asOrderedCollection.

View Raw Connections

o ®

elf edges: {1->2. 2->3. 3->2. 3->4} asOrderedCollection.
o 0 self currentState: 1.

f weights: {(1->2)->0.(2->3)->0.(3->2)->0.
(3 >4)->0} asOrderedDictionary.
1f tokens: {} asOrderedDictionary.

self nodeLocations: { 1->(143.0@123.0). 2->(30.6@128.0).
° ‘ 3->(27.0@9.0). 4->(141.0@11.0)} asOrderedDictionary.

Implementation results

3. Implementation of finite state automata (FSA)

x — O Inspectorona Grz D2~
4. Implementation of petri net aGraph
Raw _GT Meta
x -0 Inspector on a Graph Dz~ aGraph i m
aGraph 2

View Raw Connections Print
Raw _GT Meta
aGraph i m

View Raw Connections Print Meta

(O ==
O—@—@—
@ O O

(o

12

